## Compounding Math

P1. Krish makes one time investment of $x=\$ 1,000$ dollars that compounds annually at $\mathrm{r}=3 \%$ interest rate.

P1a. What is the future value of the investment $F V(t, r, x)$ after one year?
P1b. What is the future value $F V(t, r, x)$ of the investment after two years?
P1c. What is the future value $F V(t, r, x)$ of the investment after three years?
P1d. What is the future value $F V(t, r, x)$ of the investment after $t$ years?

P2. Sophie makes onetime investment of $x=\$ 1,000$ dollars that compounds monthly (i.e. $\mathrm{n}=$ 12 compounding periods in a year) at $\mathrm{r}=3 \%$ annual interest rate.

P2a. What is the future value of the investment $F V(t, r, n, x)$ after one year?
P2b. What is the future value $F V(t, r, n, x)$ of the investment after two years?
P2c. What is the future value $F V(t, r, n, x)$ of the investment after three years?
P2d. What is the future value $F V(t, r, n, x)$ of the investment after t years assuming n compounding periods per year?

## Math for Future Value Annuities

An annuity is a series of payments made at equal intervals, a.k.a. periods. In the ordinary annuity the payment is made at the and of the period. In the annuity due the payment is made at the beginning of the period.

P3. Krish has made a new year resolution to deposit \$1,000 dollars to a savings account on 31 December for the next 4 years. The savings account pays $3 \%$ interest rate compounded annually. Krish made the first deposit on 31 December 2019. What is the future value of the savings after the fourth deposit on 31 December 2022?

P3a. Solve the problem by calculating the future value of each deposit separately.
The future value of $x$ dollars compounded over $t$ periods, i.e. years in the current example, and using $r$ interest rate per period is calculated as follows

$$
F V(t, r, x)=(1+r)^{t} x
$$

Using the above formula calculate the future value of each deposit.
P3b. Sum up all the future values of deposits to get the future value of the savings on 31 December 2022

P4. Krish has made a new year resolution to deposit \$1,000 dollars to a savings account on 31 December for the next 4 years. The savings account pays $3 \%$ interest rate compounded annually. Krish made the first deposit on 31 December 2019. What is the future value of the savings after the fourth deposit on 31 December 2022?

P4a. Solve the problem by using formula for ordinary annuity (a.k.a. annuity in arrears).
P4b. Compare the calculated future value of ordinary annuity to the sum of future values of all four deposits calculated in problem 3).

P4c. Derive the formula for ordinary annuity.

P5. Krish is wondering how much the future value of the savings would be worth on 31 December 2022 if deposits of $\$ 1,000$ dollars to a savings account were made on the $1^{\text {st }}$ January for 4 years starting in 2019. The savings account pays $3 \%$ interest rate compounded annually.

P5a. Solve the problem by using formula for annuity "due" (a.k.a. annuity in advance).
P5b. Derive formula for annuity due.

P6. Krish has made a new year resolution to make deposits to a savings account on 31 December for the next 4 years. The savings account pays $3 \%$ interest rate compounded annually. Krish made the first deposit of \$1,000 on 31 December 2019. Krish plans to increase the amount of deposit by $20 \%$ each year.

P6a. What are the deposits for 2019, 2020, 2021 and 2022?
P6b. What will be the future value of each deposit on 31 December 2022?
P6c. What will be the future value of the savings after the fourth deposit on 31 December 2022?

P7. Krish has made a new year resolution to make deposits to a savings account on 31 December for the next 4 years. The savings account pays $3 \%$ interest rate compounded annually. Krish made the first deposit of \$1,000 on 31 December 2019. Krish plans to increase the amount of deposit by $20 \%$ each year.

P7a. Use the future value growth annuity formula to get the future value of savings on 31 December 2022.

P7b. Compare the future value of the ordinary growth annuity to the sum of future values of all four deposits calculated in problem 6.

P7c. Derive the future value growth annuity formula.

P8. Martha is saving for a new car in her TFSA account which earns $3 \%$ annualized interest compounded monthly. At the end of each month, she deposits $\$ 500.00$ into her account. How much will she have in the account after 5 years?

P9. Kathy is saving for her retirement and opens an RRSP - which earns $2.5 \%$ annualized interest compounded monthly. At the end of each week, she deposits $\$ 100.00$ into her account. How much will she have in the account after 35 years?

P9a. Calculate equivalent weekly rate.
P9b. Calculate the future value of the annuity

P10. Anton uses his investment account to purchase $\$ 600$ worth of mutual funds. Every two months, he purchases an additional $\$ 200$ worth of fund units. How much will he have in his account after 10 years, assuming the mutual fund pays $5 \%$, compounded semi-annually.

P10a. Calculate the future value of the initial $\$ 600$ mutual fund investment
P10b. Calculate equivalent 2-month rate
P10c. Calculate the future value of the ordinary annuity
P10d. Calculate the future value of the mutual fund holdings

P11. August is saving for a down-payment on a home. She has a TFSA with nothing in it and plans to make regular monthly deposits at the end of each month. After 6 years, she has $\$ 5,000$ in the account. If her TFSA has a 4\% interest rate compounded quarterly, how much did she deposit each month?

P11a. Calculate equivalent monthly rate.
P11b. Calculate monthly deposits.

Math for Present Value Annuities
P12. Jackie has bank student loans, at 3\% interest compounded monthly. She is making payments at the end of every four months, $\$ 200.00$ each and will have paid the loan back within 5 years.

P 12 a . What is the equivalent rate for a 4 -month period?
P12b. How much did she borrow?
P12c. How much total interest did she pay?

P13. Arnold wants to open a restaurant and decides he needs to borrow $\$ 80,000$. He sells his baseball card collection for $\$ 15,500$ and gives the money to the bank as a deposit. In return, they offer to lend him the rest at $6 \%$ interest, compounded quarterly. The bank gives Arnold 9 years to repay the loan. The payments are due on the first day of each month.

P13a. What is the equivalent rate for 4 -month period?
P13b. What is his monthly payment?
P13c. How much total interest did he pay?

P14. Arnold wants to open a restaurant and decides he needs to borrow $\$ 80,000$. He sells his baseball card collection for $\$ 15,500$ and gives the money to the bank as a deposit. In return, they offer to lend him the rest at $6 \%$ interest, compounded quarterly. The bank gives Arnold 9 years to repay the loan. The payments are due on the last day of each month.

P14a. What is the equivalent rate for 4 -month period?
P14b. What is his monthly payment?
P14c. How much total interest did he pay?

## Activity Answer Key

A1a.

$$
F V \rightarrow F V(t=1, r=3 \%, x=\$ 1,000)=(1+r) x=(1+0.03)^{*} \$ 1,000=\$ 1,030
$$

A1b.
$F V \circ F V \rightarrow F V(t=2, r=3 \%, x=\$ 1,000)=F V(1, r, F V(1, x, r))=(1+0.03) *(1+0.03) *$ $\$ 1,000=1.0609$ * $\$ 1,000=\$ 1,060.90$

A1c.

$$
F V \circ F V \circ F V \rightarrow F V(t=3, r=3 \%, x=\$ 1,000)=F V(1, r, F V(2, x, r))=(1+0.03) *
$$

$$
(1+0.03) *(1+0.03) * \$ 1,000=1.09273 * \$ 1,000=\$ 1,092.73
$$

A1d.

$$
F V(t, r, x)=(1+r)^{t} x
$$

A2a.
$F V \rightarrow F V(t=1, r=3 \%, n=12, x=\$ 1,000)=\left(1+\frac{0.03}{12}\right)^{12} * \$ 1,000=\$ 1,030.42$
A2b.
$F V \circ F V \rightarrow F V(t=2, r=3 \%, n=12, x=\$ 1,000)=F V(1, r, n, F V(1, r, n, x))=(1+$
$\left.\frac{0.03}{12}\right)^{12}\left(1+\frac{0.03}{12}\right)^{12} * \$ 1,000=\left(1+\frac{0.03}{12}\right)^{12 * 2} * \$ 1,000=1.06176 * \$ 1,000=\$ 1,061.76$
A2c.
$F V \circ F V \rightarrow F V(t=3, r=3 \%, n=12, x=\$ 1,000)=F V(1, r, n, F V(2, r, n, x))=(1+$
$\left.\frac{0.03}{12}\right)^{12}\left(1+\frac{0.03}{12}\right)^{12 * 2} * \$ 1,000=\left(1+\frac{0.03}{12}\right)^{12 * 3} * \$ 1,000=1.09405 * \$ 1,000=\$ 1,094.05$
A2d.
$F V \circ F V \circ F V \rightarrow F V(t, r, n, x)=\left(1+\frac{r}{n}\right)^{n t} x$

A3a.
$1^{\text {st }}$ deposit: What is the future value $F V(t, r, x)$ on 31 December 2022 of the $1^{\text {st }}$ deposit made on 31 December 2019 after three years of compounding?
2019: $F V(t=3, r=3 \%, x=\$ 1,000)=(1+0.03)^{3} * \$ 1,000=\$ 1,092.73$
Note that there I no compounding in 2019 as deposit was made on 31 December 2019. Thus, the deposit is compounded through 2020, 2021 and 2020, i.e. through 3 years
$2^{\text {nd }}$ deposit: What is the future value $F V(t, r, x)$ on 31 December 2022 of the $2^{\text {nd }}$ deposit made on 31 December 2020 after two years of compounding?
2020: $F V(t=2, r=3 \%, x=\$ 1,000)=(1+0.03)^{2} * \$ 1,000=\$ 1,060.90$
$3^{\text {rd }}$ deposit: What is the future value $F V(t, r, x)$ on 31 December 2022 of the $3^{\text {rd }}$ deposit made on 31 December 2021 after one year of compounding?
2021: $F V(t=1, r=3 \%, x=\$ 1,000)=(1+0.03)^{1} * \$ 1,000=\$ 1,030$
$4^{\text {th }}$ deposit: What is the future value $F V(t, r, x)$ on 31 December 2022 of the $4^{\text {th }}$ deposit made on 31 December 2022?
2022: $F V(t=0, r=3 \%, x=\$ 1,000)=(1+0.03)^{0} * \$ 1,000=\$ 1,000$

A3b. Add up future values of all four deposits to calculate the future value of the savings on 31 December 2022, namely:

$$
\begin{aligned}
& \text { Sum }=\left[(1+r)^{3}+(1+r)^{2}+(1+r)^{1}+(1+r)^{0}\right] x \\
& \text { Sum }=\left[(1+0.03)^{3}+(1+0.03)^{2}+(1+0.03)^{1}+(1+0.03)^{0}\right] * \$ 1,000 \\
& \text { Sum }=\$ 1,092.73+\$ 1,060.90+\$ 1,030+\$ 1,000=\$ 4,183.63
\end{aligned}
$$

A4a. Use formula to calculate future value of ordinary annuity

$$
\begin{aligned}
& \text { Annuity } F V(t, r, x)=\frac{-1+(1+r)^{t}}{r} x \\
& \text { Annuity } F V(t=4, r=3 \%, x=\$ 1,000)=\frac{-1+(1+0.03)^{4}}{0.03} * \$ 1,000=\$ 4,183.63
\end{aligned}
$$

Note that t stands for number of years that annuity covers, i.e. from 2019 to 2022, inclusive.

A4b. The future value of the ordinary annuity and the sum of future values of all annuity payments (i.e. deposits made to saving account in problem 3) are the same. An annuity is a series of payments made at equal intervals, a.k.a. periods. In the ordinary annuity the payment is made at the and of the period. The four deposits made on 31 December over the four consecutive years constitute an ordinary annuity.

Thus, the future value of the ordinary annuity on 31 December 2022 can be calculated by summing up future values of all four deposits.

[^0]```
Annuity \(F V(t, r, x)=\left[(1+r)^{t-1}+(1+r)^{t-2}+(1+r)^{t-3}+\cdots+(1+r)^{t-t}\right] x\)
Annuity \(F V(t=4, r=3 \%, x=\$ 1,000)=\left[(1+0.03)^{3}+(1+0.03)^{2}+(1+0.03)^{1}+\right.\)
\(\left.(1+0.03)^{0}\right] * \$ 1,000\)
Annuity \(F V(t=4, r=3 \%, x=\$ 1,000)=\$ 1,092.73+\$ 1,060.90+\$ 1,030+\$ 1,000=\)
\$4,183.63
```

Note that t denotes number of annuity periods. The annuity covers 4 years: 2019, 2020, 2021 and 2022. For the ordinary annuity there is no compounding in the first period, i.e. in 2019, as the payment was made on 31 December 2019. Thus, there are only three compounding periods: 2020, 2021 and 2022.

A4c. The formula for an ordinary annuity is derived as follows:
Represent the ordinary annuity as the sum of future values of the deposits (a.k.a. annuity payments) as illustrated in an earlier problem

$$
\begin{equation*}
\text { Annuity } F V(t, r, x)=\left[(1+r)^{0}+(1+r)^{1}+(1+r)^{2}+\cdots+(1+r)^{t-1}\right] x \tag{i}
\end{equation*}
$$

Multiply both sides of the above equation (i) by ( $1+\mathrm{r}$ )
Annuity $F V(t, r, x) *(1+r)=\left[(1+r)^{1}+(1+r)^{2}+(1+r)^{3}+\cdots+(1+r)^{t}\right] x$
(ii)

Subtract equation (i) from equation (ii), and simplify
Annuity $F V(t, r, x) *(1+r)$ - Annuity $F V(t, r, x)=\left[-(1+r)^{0}+(1+r)^{t}\right] x$
Annuity $F V(t, r, x) * \mathrm{r}=\left[-(1+r)^{0}+(1+r)^{t}\right] x$
Annuity $F V(t, r, x) * r=\left[-1+(1+r)^{t}\right] x$
(iii)

Divide both sides of equation (iii) by r
Annuity $F V(t, r, x)=\frac{-1+(1+r)^{t}}{r} x$

A5a. Use formula annuity due to calculate future value of the savings on 31 December 2022
Annuity Due $F V(t, r, x)=(1+\mathrm{r}) * \frac{-1+(1+r)^{t}}{r} x$
Annuity Due $F V(t=4, r=3 \%, x=\$ 1,000)=(1+0.03) * \frac{-1+(1+0.03)^{4}}{0.03} * \$ 1,000=$ \$4,309.14

A5b. To derive formula for annuity due notice that each payment made at the beginning of the year compounds for one extra year as compared to the ordinary annuity, thus:

Annuity Due $F V(t, r, x)=(1+r) *$ Annuity $F V(t, r, x)$
Annuity Due $F V(t, r, x)=(1+r) * \frac{-1+(1+r)^{t}}{r} x$

## A6a.

The annual deposits are made over four years (i.e. year $=1,2,3,4$ ). The first deposit, $x$, is made at the end of 2019 (i.e. year =1) and the subsequent deposits increase by $20 \%$ annually (i.e. growth rate $\mathrm{g}=20 \%$ ), namely:

$$
\text { Deposit }(y e a r, g, x)=(1+g)^{y e a}
$$

$1^{\text {st }}$ deposit made in year 1, i.e. in 2019
2019: Deposit $(y$ year $=1, g=20 \%, x=\$ 1,000)=(1+0.2)^{1-1} * \$ 1,000=\$ 1,000$
$\underline{2}^{\text {nd }}$ deposit made in year 2, i.e. in 2020
2020: Deposit $(y e a r=2, g=20 \%, x=\$ 1,000)=(1+0.2)^{2-1} * \$ 1,000=\$ 1,200$
$3^{\text {rd }}$ deposit made in year 3, i.e. in 2021
2021: Deposit (year $=3, g=20 \%, x=\$ 1,000)=(1+0.2)^{3-1} * \$ 1,000=\$ 1,440$
$4^{\text {th }}$ deposit made in year $=4$, i.e. in 2022
2022: Deposit $($ year $=4, g=20 \%, x=\$ 1,000)=(1+0.2)^{4-1} * \$ 1,000=\$ 1,728$

A6b. The future value of each deposit on 31 December 2022 is calculated as follows;

$$
F V(t, r, \operatorname{Deposit}(y e a r, g, x))=(1+r)^{t}(1+g)^{\text {year }-1} x
$$

The deposits are made over 4 years (i.e. $\mathrm{T}=4$ ). The table below illustrates that:

$$
\text { year }=T-t
$$

Thus, the future value of each deposit is calculated as

$$
F V(t, r, \operatorname{Deposit}(T-t, g, x))=(1+r)^{t}(1+g)^{T-t-1} x
$$

| Deposit Date | year | t <br> (number of years a <br> deposit will <br> compound) | year <br> t |
| :---: | :--- | :--- | :--- |
| 31 December 2019 | 1 | 3 | $1=4-3$ |
| 31 December 2020 | 2 | 2 | $2=4-2$ |
| 31 December 2021 | 3 | 1 | $3=4-1$ |
| 31 December 2022 | 4 | 0 | $4=4-0$ |

$1^{\text {st }}$ deposit made in year 1, i.e. in 2019, will yield the following future value on 31 December 2022
2019: $F V(t=3, r=3 \%$, Deposit $(y e a r=4-3, g=20 \%, x=\$ 1,000))=$ $(1+0.03)^{3}(1+0.2)^{4-3-1} * \$ 1,000=(1+0.03)^{3} * \$ 1,000=\$ 1,092.73$

Copyright © FinStart.ca. All Rights Reserved • Please refer to Terms of Service at the end of this document.
$\underline{2}^{\text {nd }}$ deposit made in year 2, i.e. in 2020, will yield the following future value on 31 December 2022
2020: $F V(t=2, r=3 \%$, Deposit $($ year $=4-2, g=20 \%, x=\$ 1,000))=$
$(1+0.03)^{2}(1+0.2)^{4-2-1} * \$ 1,000=(1+0.03)^{2}(1+0.2)^{1} * \$ 1,000=(1+0.03)^{2} *$ $\$ 1,200=\$ 1,273.08$
$3{ }^{\text {rd }}$ deposit made in year 3, i.e. in 2021, will yield the following future value on 31 December 2022
2021: $F V(t=1, r=3 \%$, Deposit $(y e a r=4-1, g=20 \%, x=\$ 1,000))=$
$(1+0.03)^{1}(1+0.2)^{4-1-1} * \$ 1,000=(1+0.03)^{1}(1+0.2)^{2} * \$ 1,000=(1+0.03) *$ $\$ 1,440=\$ 1,483.20$
$4^{\text {th }}$ deposit made in year 3, i.e. in 2021, will yield the following future value on 31 December 2022
2022: $F V(t=0, r=3 \%$, Deposit $($ year $=4-0, g=20 \%, x=\$ 1,000))=$ $(1+0.03)^{0}(1+0.2)^{4-0-1} * \$ 1,000=(1+0.2)^{3} * \$ 1,000=\$ 1,728.00$

A6c. The future value of the savings after the fourth deposit on 31 December 2022 is the sum of the future values of all four deposits:

$$
\begin{aligned}
& \operatorname{Sum}_{g)^{3} x}=(1+r)^{3}(1+g)^{0} x+(1+r)^{2}(1+g)^{1} x+(1+r)^{1}(1+g)^{2} x+(1+r)^{0}(1+ \\
& g+1
\end{aligned}
$$

$$
\begin{aligned}
& \text { Sum }=(1+0.03)^{3}(1+0.2)^{0} * \$ 1,000+(1+0.03)^{2}(1+g)^{1} * \$ 1,000 \\
&+(1+0.03)^{1}(1+0.2)^{2} * \$ 1,000+(1+r)^{0}(1+g)^{3} * \$ 1,000
\end{aligned}
$$

Sum $=\$ 1,092.73+\$ 1,273.08+\$ 1,483.20+\$ 1,728=\$ 5,577.01$

A7a. The following are compact formulas for the future value of the ordinary growth annuity and of the growth annuity due paid over $t$ years:

$$
\begin{array}{lc}
\text { Annuity } F V(t, r, x, g)=\frac{(1+r)^{t}-(1+g)^{t}}{r-g} x & \text { when } r \neq g \\
\text { Annuity } F V(t, r, x, g)=t(1+r)^{t-1} x & \text { when } r=g \\
\text { Annuity Due } F V(t, r, x, g)=(1+r) * \text { Annuity } F V(t, r, x, g)
\end{array}
$$

Applying the ordinary growth annuity formula to the current problem yields the following answer:

$$
\text { Annuity } F V(t=4, r=3 \%, x=\$ 1,000, g=20 \%)=\frac{(1+0.03)^{4}-(1+0.2)^{4}}{0.03-0.2} * \$ 1,000=
$$ \$5,577.01

Copyright © FinStart.ca. All Rights Reserved • Please refer to Terms of Service at the end of this document.

A7b. The future value of the ordinary annuity and the sum of future values of all annuity payments (i.e. deposits made to saving account in problem 6) are the same. An annuity is a series of payments made at equal intervals, a.k.a. periods. In the ordinary annuity the payment is made at the and of the period. The four deposits made on 31 December over the four consecutive years constitute an ordinary annuity.

Thus, the future value of the ordinary annuity on 31 December 2022 can be calculated by summing up future values of all four deposits

$$
\begin{aligned}
& \text { Annuity } F V(t=4, r, x, g)=(1+r)^{3}(1+g)^{0} x+(1+r)^{2}(1+g)^{1} x+(1+r)^{1}(1+ \\
& g)^{2} x+(1+r)^{0}(1+g)^{3} x \\
& \text { Annuity } F V(t=4, r, x, g)=(1+0.03)^{3}(1+0.2)^{0} * \$ 1,000+(1+0.03)^{2}(1+g)^{1} * \\
& \$ 1,000+(1+0.03)^{1}(1+0.2)^{2} * \$ 1,000+(1+r)^{0}(1+g)^{3} * \$ 1,000 \\
& \text { Annuity } F V(t=4, r=3 \%, x=\$ 1,000, g=20 \%)=\$ 1,092.73+\$ 1,273.08+ \\
& \$ 1,483.20+\$ 1,728=\$ 5,577.01
\end{aligned}
$$

A7c. Derive formula for ordinary annuity with the annuity payments growing at rate g annually.

Start from the equation shown in point b that represents sum of the future values of all deposits, namely:

$$
\begin{aligned}
& \text { Annuity } F V(t=4, r, x, g)=(1+r)^{3}(1+g)^{0} x+(1+r)^{2}(1+g)^{1} x+ \\
& (1+r)^{1}(1+g)^{2} x+(1+r)^{0}(1+g)^{3} x
\end{aligned}
$$

Generalize the above equation for any arbitrary value of $t$, namely:

$$
\begin{aligned}
& \text { Annuity } F V(t, r, x, g) \\
&=(1+r)^{t-1}(1+g)^{t-t} x+(1+r)^{t-2}(1+g)^{t-(t-1)} x \\
&+(1+r)^{t-3}(1+g)^{t-(t-2)} x+\cdots+(1+r)^{t-(t+1)}(1+g)^{t-(t-t+1)} x \\
&+(1+r)^{t-t}(1+g)^{t-(t-t+1)} x
\end{aligned}
$$

Further simplify the above equation

$$
\begin{align*}
& \text { Annuity } F V(t, r, x, g)=\left[(1+r)^{t-1}(1+g)^{0}+(1+r)^{t-2}(1+g)^{t-(t-1)}+\right. \\
& \left.(1+r)^{t-3}(1+g)^{t-(t-2)}+\cdots+(1+r)^{1}(1+g)^{t-2}+(1+r)^{0}(1+g)^{t-1}\right] x \tag{i}
\end{align*}
$$

When $r \neq g$
Multiply the above equation (i) by (1+r)/(1+g)

$$
\begin{align*}
& \text { Annuity } F V(t, r, x, g) \frac{1+r}{1+g}=\left[(1+r)^{t}(1+g)^{-1}+(1+r)^{t-1}(1+g)^{0}+\right. \\
& \left.(1+r)^{t-2}(1+g)^{t-(t-1)}+\cdots+(1+r)^{2}(1+g)^{t-3}+(1+r)^{1}(1+g)^{t-2}\right] x \tag{ii}
\end{align*}
$$

Copyright © FinStart.ca. All Rights Reserved • Please refer to Terms of Service at the end of this document.

Subtract equation (i) from equation (ii), namely:
Annuity $F V(t, r, x, g)\left(\frac{1+r}{1+g}-1\right)=\left[(1+r)^{t}(1+g)^{-1}-(1+r)^{0}(1+g)^{t-1}\right] x$
(iii)

Multiply both sides of the above (iii) by $(1+\mathrm{g})$, namely:
Annuity $F V(t, r, x, g)(1+r-1-g)=\left[(1+r)^{t}(1+g)^{-1+1}-(1+r)^{0}(1+\right.$ g) $\left.{ }^{t-1+1}\right] x$

Annuity $F V(t, r, x, g)(r-g)=\left[(1+r)^{t}-(1+g)^{t}\right] x$
(iv)

Divide both sides of equation (iv) by ( $\mathrm{r}-\mathrm{g}$ ) to derive future value growth annuity formula

Annuity $F V(t, r, x, g \neq r)=\frac{(1+r)^{t}-(1+g)^{t}}{r-g} x$
When $r=g$
Substitute $g$ for $r$ in equation (i), namely:

$$
\begin{aligned}
& \text { Annuity } F V(t, r, x, g=r) \\
& \quad \begin{aligned}
& =\left[(1+r)^{t-1}(1+r)^{0}+(1+r)^{t-2}(1+r)^{t-(t-1)}\right. \\
& +(1+r)^{t-3}(1+r)^{t-(t-2)}+\cdots+(1+r)^{1}(1+r)^{t-2} \\
& \left.+(1+r)^{0}(1+r)^{t-1}\right] x
\end{aligned}
\end{aligned}
$$

Simplify the above equation, namely:

$$
\begin{aligned}
& \text { Annuity } F V(t, r, x, g=r) \\
& \quad=\left[(1+r)^{t-1}+(1+r)^{t-1}+(1+r)^{t-1}+\cdots+(1+r)^{t-1}\right. \\
& \left.\quad+(1+r)^{t-1}\right] x
\end{aligned}
$$

Note that term $(1+r)^{t-1}$ occurs exactly t times, and thus, equation simplifies to:

$$
\text { Annuity } F V(t, r, x, g=r)=t(1+r)^{t-1} x
$$

A8.

$$
\begin{aligned}
& \text { Annuity } F V(t, r, n, x)=\left(\frac{-1+\left(1+\frac{r}{n}\right)^{n t}}{\frac{r}{n}}\right) x \\
& \text { Annuity } F V(t=5, r=3 \%, n=12, \mathrm{x}=\$ 500)=\left(\frac{\left(1+\frac{0.03}{12}\right)^{12 * 5}-1}{\frac{0.03}{12}}\right) * 500=\$ 290,744.79
\end{aligned}
$$

A9a. Calculate weekly equivalent nominal rate

| Compounding | Periods <br> per <br> Year | Nominal Rate | Effective Rate |
| :--- | :--- | :--- | :--- |
| Monthly | 12 | $2.5 \%$ | $2.52885 \%$ calculated as <br> $-1+\left(1+\frac{0.025}{12}\right)^{12}$ |
| Weekly | 52 | $2.49799 \%$ calculated as <br> 52 | $2.52885 \%$ <br> Must be the same as the <br> monthly effective rate to <br> calculate equivalent nominal <br> rate |

$$
\begin{aligned}
& \left(1+\frac{r_{\text {weekly }}}{52}\right)^{52}=\left(1+\frac{0.025}{12}\right)^{12} \\
& r_{\text {weekly }}=52 *\left[-1+\left(1+\frac{0.025}{12}\right)^{\frac{12}{52}}\right]=2.49799 \%
\end{aligned}
$$

A9b. Calculate the future value of the ordinary annuity

$$
\text { Annuity } F V(t, r, \mathrm{n}, x)=\left(\frac{-1+\left(1+\frac{r}{n}\right)^{n t}}{\frac{r}{n}}\right) x
$$

$$
\text { Annuity } F V(t=35, r=2.49799 \%, n=52, \mathrm{x}=\$ 100)=\left(\frac{\left(1+\frac{0.0249799}{52}\right)^{52 * 35}-1}{\frac{0.024999}{52}}\right) * 100=
$$ \$290,744.79

A10a. Calculate the future value of the initial investment

$$
\begin{aligned}
& F V(t, r, n, x)=\left(1+\frac{r}{n}\right)^{n t} x \\
& F V(t=10, r=5 \%, n=2, x=\$ 600)=\left(1+\frac{0.05}{2}\right)^{2 * 10} * 600=983.17
\end{aligned}
$$

A10b. Calculate 2-month equivalent nominal rate

| Compounding | Periods <br> per <br> Year | Nominal Rate | Effective Rate |
| :--- | :--- | :--- | :--- |
| Semi-annual | 2 | $5 \%$ | $5.0625 \%$ calculated as <br> $-1+\left(1+\frac{0.05}{2}\right)^{2}$ |
| 2-month <br> period | 6 | $4.9589 \%$ calculated as <br> $\frac{2}{2}$ | $5.0625 \%$ <br> Must be the same as the semi- <br> annual effective rate to <br> calculate equivalent nominal <br> rate |

$$
\begin{aligned}
& \left(1+\frac{r_{2 \_m o n t}}{6}\right)^{6}=\left(1+\frac{0.05}{12}\right)^{12} \\
& r_{2 \_m o n t}=6 *\left[-1+\left(1+\frac{0.05}{2}\right)^{\frac{2}{6}}\right]=4.9589 \%
\end{aligned}
$$

A10c. Calculate the future value of the ordinary annuity

$$
\text { Annuity } F V(t, r, n, x)=\left(\frac{-1+\left(1+\frac{r}{n}\right)^{n t}}{\frac{r}{n}}\right) x
$$

$$
\text { Annuity } F V(t=10, r=4.9589 \%, n=6, \mathrm{x}=\$ 200)=\left(\frac{\left(1+\frac{0.049589}{6}\right)^{6 * 10}-1}{\frac{0.04959}{6}}\right) * 200=
$$ \$15,453.82

A10d. Calculate the future value of the mutual fund holdings
$F V$ of mutual fund holdings $=F V(t=10, r=5 \%, n=2, x=\$ 600)+$ Annuity $F V(t=10, r=4.9589 \%, n=6, \mathrm{x}=\$ 200)$

FV of mutual fund holdings $=983.17+\$ 15,453.82=\$ 16,436.99$

P11a. Calculate monthly equivalent nominal rate

| Compounding | Periods <br> per <br> Year | Nominal Rate | Effective Rate |
| :--- | :--- | :--- | :--- |
| Quarterly | 4 | $4 \%$ | $4.06040 \%$ calculated as <br> $-1+\left(1+\frac{0.04}{4}\right)^{4}$ |
| Monthly | 12 | $3.98674 \%$ calculated as <br> 12 | $4.06040 \%$ Must be the same as <br> the monthly effective rate to <br> calculate equivalent nominal <br> rate |

$$
\begin{aligned}
& \left(1+\frac{r_{\text {monthly }}}{12}\right)^{12}=\left(1+\frac{0.04}{4}\right)^{4} \\
& r_{\text {monthly }}=12 *\left[-1+\left(1+\frac{0.05}{2}\right)^{\frac{4}{12}}\right]=3.98674 \%
\end{aligned}
$$

P11b. Calculate monthly deposits

$$
\begin{aligned}
& \text { Annuity } F V(t, r, n, x)=\left(\frac{-1+\left(1+\frac{r}{n}\right)^{n t}}{\frac{r}{n}}\right) x \\
& \text { Annuity } F V(t=6, r=3.98674 \%, n=12, \mathrm{x})=\left(\frac{\left(1+\frac{0.0398674}{12}\right)^{12 * 6}-1}{\frac{0.0398674}{12}}\right) \mathrm{x}=66.2767 \mathrm{x} \\
& \text { Annuity } F V(t=6, r=3.98674 \%, n=12, \mathrm{x})=\$ 5,000 \\
& 66.2767 \mathrm{x}=\$ 5,000 \\
& \mathrm{x}=\$ 5,000 / 66.2767=\$ 75.44
\end{aligned}
$$

A12a. Calculate the 4-month period equivalent nominal rate.

| Compounding | Periods <br> per <br> Year | Nominal Rate | Effective Rate |
| :--- | :--- | :--- | :--- |
| Monthly | 12 | $3 \%$ | $3.04160 \%$ calculated as <br> $-1+\left(1+\frac{0.03}{12}\right)^{12}$ |
| 4-month <br> period | 3 | $3.01127 \%$ calculated as <br> 12 | $3.04160 \%$ <br> Must be the same as the <br> monthly effective rate to <br> calculate equivalent nominal <br> rate |

$$
\begin{aligned}
& \left(1+\frac{r_{4-m o n t h}}{3}\right)^{3}=\left(1+\frac{0.03}{12}\right)^{12} \\
& r_{4 \_ \text {mont }}=3 *\left[-1+\left(1+\frac{0.03}{12}\right)^{\frac{12}{3}}\right]=3.01127 \%
\end{aligned}
$$

A12b. Calculate the present value of the ordinary annuity

$$
\begin{aligned}
& \text { Annuity } P V(t, r, n, x)=\left(\frac{1-\left(1+\frac{r}{n}\right)^{-n}}{\frac{r}{n}}\right) x \\
& \begin{aligned}
\text { Annuity } P V(t & =5, r=3 \%, n=3, x=\$ 200)=\left(\frac{1-\left(1+\frac{0.0301127}{3}\right)^{-3 * 5}}{\frac{0.0301127}{3}}\right) * 200 \\
& =\$ 2,772.20
\end{aligned}
\end{aligned}
$$

A12c. Calculate the total interest paid total interest $=n * t * x-$ Annuity $P V=3 * 5 * 200-2,772.20=\$ 227.80$

A13a. Calculate 4-month period equivalent nominal rate

| Compounding | Periods <br> per <br> Year | Nominal Rate | Effective Rate |
| :--- | :--- | :--- | :--- |
| Quarterly | 4 | $6 \%$ | $6.13636 \%$ calculated as <br> $-1+\left(1+\frac{0.06}{4}\right)^{4}$ |
| Monthly | 12 | $5.97025 \%$ calculated as <br> 12 | $6.13636 \%$ <br> Must be the same as the |
| quarterly effective rate to |  |  |  |
| calculate equivalent nominal |  |  |  |
| rate |  |  |  |

$$
\begin{aligned}
& \left(1+\frac{r_{\text {monthly }}}{12}\right)^{12}=\left(1+\frac{0.06}{4}\right)^{4} \\
& r_{\text {monthly }}=12 *\left[-1+\left(1+\frac{0.06}{4}\right)^{\frac{4}{12}}\right]=5.97025 \%
\end{aligned}
$$

A13b. Calculate the monthly payment required on the first day of the month Annuity Due $P V(t, r, n, x)=\left(1+\frac{r}{n}\right)\left(\frac{1-\left(1+\frac{r}{n}\right)^{-n}}{\frac{r}{n}}\right) x$

Annuity Due PV $(t=9, r=5.97025 \%, n=12, x)$

$$
=\left(1+\frac{0.0597025}{12}\right)\left(\frac{1-\left(1+\frac{0.0597025}{12}\right)^{-1 * 9}}{\frac{0.0597025}{12}}\right) x
$$

Annuity Due $\operatorname{PV}(t=9, r=5.97025 \%, n=12, x)=83.81050 x$
Annuity Due $P V(t=9, r=5.97025 \%, n=12, x)=\$ 80,000-\$ 15,500=\$ 64,500$
$83.81050 x=\$ 64,500$
$x=\frac{\$ 64,500}{83.81050}=\$ 769.59$

A13c. Calculate total interest paid

$$
\begin{aligned}
& \text { total interest }=n * t * x-\text { Annuity Due } P V(t, r, n, x) \\
& \text { total interest }=12 * 9 * 769.59-64500=83,116.08-64500 \\
& \text { total interest }=\$ 18,616.08
\end{aligned}
$$

Copyright © FinStart.ca. All Rights Reserved • Please refer to Terms of Service at the end of this document.

A14a. Calculate 4-month period equivalent nominal rate

| Compounding | Periods <br> per <br> Year | Nominal Rate | Effective Rate |
| :--- | :--- | :--- | :--- |
| Quarterly | 4 | $6 \%$ | $6.13636 \%$ calculated as <br> $-1+\left(1+\frac{0.06}{4}\right)^{4}$ |
| Monthly | 12 | $5.97025 \%$ calculated as <br> 12 | $6.13636 \%$ <br> Must be the same as the |
|  | $*\left[-1+\left(1+\frac{0.05}{2}\right)^{\frac{4}{12}}\right]$ | quarterly effective rate to <br> calculate equivalent nominal <br> rate |  |

$$
\begin{aligned}
& \left(1+\frac{r_{\text {month }}}{12}\right)^{12}=\left(1+\frac{0.06}{4}\right)^{4} \\
& r_{\text {monthly }}=12 *\left[-1+\left(1+\frac{0.06}{4}\right)^{\frac{4}{12}}\right]=5.97025 \%
\end{aligned}
$$

A14b. Calculate the monthly payment required on the last day of the month

$$
\text { Annuity } P V(t, r, n, x)=\left(\frac{1-\left(1+\frac{r}{n}\right)^{-n t}}{\frac{r}{n}}\right) x
$$

$$
\text { Annuity } P V(t=9, r=5.97025 \%, n=12, x)
$$

$$
=\left(1+\frac{0.0597025}{12}\right)\left(\frac{1-\left(1+\frac{0.0597025}{12}\right)^{-12 * 9}}{\frac{0.0597025}{12}}\right) x
$$

Annuity $\operatorname{PV}(t=9, r=5.97025 \%, n=12, x)=83.39559 x$
Annuity $\operatorname{PV}(t=9, r=5.97025 \%, n=12, x)=\$ 80,000-\$ 15,500=\$ 64,500$
$83.39559 x=\$ 64,500$

$$
x=\frac{\$ 64,500}{83.39559}=\$ 773.42
$$

A14c. Calculate total interest paid

$$
\begin{aligned}
& \text { total interest }=n * t * x-\text { Annuity } P V(t, r, n, x) \\
& \text { total interest }=12 * 9 * \$ 773.42-64500=\$ 83,529.60-64500 \\
& \text { total interest }=\$ 19,029.60
\end{aligned}
$$

## Terms of Service

FinStart's goal is to educate.
The information on the Site is provided for general information only and is not exhaustive. We aim to update the Site as needed. However, the information can change without notice we cannot guarantee that it will always be accurate and error-free. Please do your own research to verify for yourself the ideas you find on this Site.
FinStart © not a financial services firm. The information on this Site does not constitute advice of any kind and does not nor should it replace competent financial services, legal, accounting and other professional advice. Please do not rely on this information to make financial or investment decisions and seek independent advice as required for your purposes.
We do not warrant that your use of the Site, the operation or function of the Site, or any services offered through or from the Site, will be uninterrupted, that defects will be corrected, or that this Site or its server are free of viruses or other harmful elements.
Therefore, FinStart or its contributors shall not be liable for any damages related to your use or inability to use this Site, including without limitation direct, indirect, special, compensatory or consequential damages, lost profits or loss of or damage to property.

If you are dissatisfied with the Site, any of its contents, or any of our terms, kindly contact us directly.
Proprietary Materials. The website and all associated educational resources are owned and operated by FinStart.ca. The visual interfaces, graphics, design, compilation, information, computer code (including source code or object code), software, services, content, educational videos and exercises, lesson plans, and all other elements are protected by Canadian and international copyright, patent, and trademark laws, international conventions, and other applicable laws governing intellectual property and proprietary rights. Except for any user content provided and owned by users, all content and trademarks, service marks, and trade names, contained on or available through the website are owned by or licensed to FinStart.ca.

Licensed Educational Content. FinStart.ca may make available on the Website certain educational videos, exercises, and related supplementary materials that are owned by it or its third-party licensors. FinStart.ca may grant to you in writing a non-exclusive, non-transferable right to access and use such content solely for agreed-upon one-time non-commercial use in a specified classroom setting.
Crediting FinStart.ca. If you distribute, publicly perform or display, transmit, publish, or otherwise make available any licensed educational content or any derivative works thereof, you must also provide prominently the following notice: "All FinStart content is available for free at www.finstart.ca".
Third-Party Sites, Products and Services. The website may include links or references to other web sites or services solely as a convenience to users. FinStart.ca does not endorse any such reference sites or the information, materials, products, or services contained on or accessible through them. Access and use of reference sites, including the information, materials, products, and services on or available through reference sites is solely at your own risk.
No Warranties. The website, and all data, information, software, website materials, content, user content, reference sites, lesson plans, additional educational resources, services, or applications made available in conjunction with or through the website, are provided on an "as is", "as available", and "with all faults" basis. To the fullest extent permissible pursuant to applicable laws, FinStart.ca and its affiliates and licensors, disclaim any and all warranties and conditions, whether statutory, express or implied, including, but not limited to, all implied warranties of merchantability, fitness for a particular purpose, title, and non-infringement. No advice or information, whether oral or written, obtained by you from FinStart.ca or through the website will create any warranty not expressly stated herein.
Content. FinStart.ca, and its suppliers, licensors, and affiliates, do not warrant that the website or any data, user content, functions, or any other information offered on or through the website will be uninterrupted, or free of errors, viruses or other harmful components, and do not warrant that any of the foregoing will be corrected.
Harm to Your Computer. Users understand and agree that their use, access, download, or otherwise obtaining of content, website materials, software, or data through the website (including through any APIs) is at their own discretion and risk, and that they will be solely responsible for any damage to their property (including their computer systems) or loss of data that results therefrom.

FinStart for Teachers. FinStart makes available certain resources to teachers who register with us such that they can use them to work with students in order to provide such students with tutorial or educational services as part of the school's curriculum or as an extra-curricular activity, and to review and evaluate educational achievement and progress of such students. If you are accessing our resources on behalf of a school, school district, or any educational institution, the following terms apply to you:
(a) Limitations on Use. FinStart's website and resources are provided to you for educational purposes as part of the school curriculum. You must use them in compliance with all applicable laws, rules, and regulations. You agree not to reproduce, duplicate, copy, sell, resell or otherwise exploit for any commercial purpose, any portion of our website or any resources we share with you.
(b) Responsibility for Consent and Notices. You and your school assume sole responsibility for obtaining any consents required from parents or guardians, and for providing appropriate disclosures to users and their parents regarding their use of our resources and our terms of use. You agree to be bound by these terms. Specifically you agree, individually and on behalf of the institution, that:
(i) You assume sole responsibility for providing appropriate notices and disclosures to students accessing our resources for classroom use and their parents regarding the students' use of our website and any resources we share with you and our terms.
(ii) You assume sole responsibility for obtaining any consents required from parents or guardians in connection with accessing our website and other resources for classroom use. You represent and warrant to FinStart that, prior to using our website and resources with students, you have either obtained all necessary parent or guardian consents, or have complied and will comply with all applicable requirements of an exemption from or exception to parental consent requirements.
(c) Use of Integrated Services. If you choose to allow your students to use another service, such as Google Classroom, in conjunction with using FinStart's website and other resources, you are responsible for educating your students on the proper use of integrated services.


[^0]:    Copyright © FinStart.ca. All Rights Reserved • Please refer to Terms of Service at the end of this document.

